61 research outputs found

    Rifampicin mono-resistant tuberculosis is not the same as multidrug-resistant tuberculosis: a descriptive study from Khayelitsha, South Africa

    Get PDF
    Rifampicin mono-resistant TB (RMR-TB, rifampicin resistance and isoniazid susceptibility) constitutes 38% of all rifampicin-resistant TB (RR-TB) in South Africa and is increasing. We aimed to compare RMR-TB with multidrug-resistant TB (MDR-TB) within a high TB, RR-TB and HIV burden setting. Patient-level clinical data and stored RR-TB isolates from 2008-2017 with available whole genome sequencing (WGS) data were used to describe risk factors associated with RMR-TB and to compare rifampicin-resistance (RR) conferring mutations between RMR-TB and MDR-TB. A subset of isolates with particular RR-conferring mutations were subjected to semi-quantitative rifampicin phenotypic drug susceptibility testing. Among 2,041 routinely diagnosed RR-TB patients, 463 (22.7%) had RMR-TB. HIV-positive individuals (adjusted Odds Ratio 1.4, 95% CI 1.1-1.9) and diagnosis between 2013-2017 versus 2008-2012 (aOR 1.3, 1.1-1.7) were associated with RMR-TB. Among 1,119 (54.8%) patients with available WGS data showing RR-TB, significant differences in the distribution of rpoB RR-conferring mutations between RMR-TB and MDR-TB isolates were observed. Mutations associated with high-level RR were more commonly found among MDR-TB isolates (811/889, 90.2% versus 162/230, 70.4% among RMR-TB, p<0.0001). In particular, the rpoB L430P mutation, conferring low-level RR, was identified in 32/230 (13.9%) RMR-TB versus 10/889 (1.1%) in MDR-TB (p<0.0001). Among 10 isolates with an rpoB L430P mutation, 7 were phenotypically susceptible using the critical concentration of 0.5 mug/ml (range 0.125-1 mug/ml). The majority (215/230, 93.5%) of RMR-TB isolates showed susceptibility to all other TB drugs, highlighting the potential benefits of WGS for simplified treatment. These data suggest that the evolution of RMR-TB differs from MDR-TB with a potential contribution from HIV infection

    Serial counts of Mycobacterium tuberculosis in sputum as surrogate markers of the sterilising activity of rifampicin and pyrazinamide in treating pulmonary tuberculosis

    Get PDF
    BACKGROUND: Since the sterilising activity of new antituberculosis drugs is difficult to assess by conventional phase III studies, surrogate methods related to eventual relapse rates are required. METHODS: A suitable method is suggested by a retrospective analysis of viable counts of Mycobacterium tuberculosis in 12-hr sputum collections from 122 newly diagnosed patients with pulmonary tuberculosis in Nairobi, done pretreatment and at 2, 7, 14 and 28 days. Treatment was with isoniazid and streptomycin, supplemented with either thiacetazone (SHT) or rifampicin + pyrazinamide (SHRZ). RESULTS: During days 0–2, a large kill due to isoniazid occurred, unrelated to treatment or HIV status; thereafter it decreased exponentially. SHRZ appeared to have greater sterilising activity than SHT during days 2–7 (p = 0.044), due to rifampicin, and during days 14–28, probably due mainly to pyrazinamide. The greatest discrimination between SHRZ and SHT treatments was found between regression estimates of kill over days 2–28 (p = 0.0005) in patients who remained positive up to 28 days with homogeneous kill rates. No associations were found between regression estimates and the age, sex, and extent of disease or cavitation. An increased kill in HIV seropositive patients, unrelated to the treatment effect, was evident during days 2–28 (p = 0.007), mainly during days 2–7. CONCLUSIONS: Surrogate marker studies should either be in small groups treated with monotherapy during days 2 to about 7 or as add-ons or replacements in isoniazid-containing standard regimens from days 2 to 28 in large groups

    Clinical use of Whole Genome Sequencing for Mycobacterium tuberculosis

    Get PDF
    Drug resistant tuberculosis (TB) remains a major challenge to global health and to healthcare in the UK. In 2014, England recorded 6520 cases of TB of which 1.4% were multi-drug resistant (MDR-TB). Extensively drug resistant TB (XDR-TB) occurs at a much lower rate, but the impact on the patient and hospital is severe. Current diagnostic methods such as drug susceptibility testing and targeted molecular tests are slow to return or examine only a limited number of target regions respectively. Faster, more comprehensive diagnostics will enable earlier use of the most appropriate drug regimen thus improving patient outcome and reducing overall healthcare costs. Whole genome sequencing has been shown to provide a rapid and comprehensive view of the genotype of the organism and thus enable reliable prediction of the drug susceptibility phenotype within a clinically relevant time frame. In addition it provides the highest resolution when investigating transmission events in possible outbreak scenarios. However, robust software and database tools need to be developed for the full potential to be realized in this specialized area of medicine

    The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis.

    Get PDF
    Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues

    Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): study protocol for a randomized controlled trial.

    Get PDF
    BACKGROUND: Evidence has existed for decades that higher doses of rifampin may be more effective, but potentially more toxic, than standard doses used in tuberculosis treatment. Whether increased doses of rifampin could safely shorten treatment remains an open question. METHODS/DESIGN: The HIRIF study is a phase II randomized trial comparing rifampin doses of 20 and 15 mg/kg/day to the standard 10 mg/kg/day for the first 2 months of tuberculosis treatment. All participants receive standard doses of companion drugs and a standard continuation-phase treatment (4 months, 2 drugs). They are followed for 6 months post treatment. Study participants are adults with newly diagnosed, previously untreated, smear positive (≥2+) pulmonary tuberculosis. The primary outcome is rifampin area under the plasma concentration-time curve (AUC0-24) after at least 14 days of study treatment/minimum inhibitory concentration. 180 randomized participants affords 90 % statistical power to detect a difference of at least 14 mcg/mL*hr between the 20 mg/kg group and the 10 mg/kg group, assuming a loss to follow-up of up to 17 %. DISCUSSION: Extant evidence suggests the potential for increased doses of rifampin to shorten tuberculosis treatment duration. Early studies that explored this potential using intermittent, higher dosing were derailed by toxicity. Given the continued large, global burden of tuberculosis with nearly 10 million new cases annually, shortened regimens with existing drugs would offer an important advantage to patients and health systems. TRIAL REGISTRATION: This trial was registered with clinicaltrials.gov (registration number: NCT01408914 ) on 2 August 2011

    GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions

    Get PDF
    YesDrug resistance diagnostics that rely on the detection of resistance-related mutations could expedite patient care and TB eradication. We perform minimum inhibitory concentration testing for 12 anti-TB drugs together with Illumina whole-genome sequencing on 1452 clinical Mycobacterium tuberculosis (MTB) isolates. We evaluate genome-wide associations between mutations in MTB genes or non-coding regions and resistance, followed by validation in an independent data set of 792 patient isolates. We confirm associations at 13 non-canonical loci, with two involving non-coding regions. Promoter mutations are measured to have smaller average effects on resistance than gene body mutations. We estimate the heritability of the resistance phenotype to 11 anti-TB drugs and identify a lower than expected contribution from known resistance genes. This study highlights the complexity of the genomic mechanisms associated with the MTB resistance phenotype, including the relatively large number of potentially causal loci, and emphasizes the contribution of the non-coding portion of the genome.Biomedical research grant from the American Lung Association (PI MF, RG-270912-N), a K01 award from the BD2K initiative (PI MF, ES026835), and an NIAID U19 CETR grant (P.I. M.M., AI109755), the Belgian Science Policy (Belspo) (L.R., C.J.M.)

    Updating the approaches to define susceptibility and resistance to anti-tuberculosis agents: implications for diagnosis and treatment

    Get PDF
    11 páginas, 2 figuras, 1 tablaInappropriately high breakpoints have resulted in systematic false-susceptible AST results to anti-TB drugs. MIC, PK/PD and clinical outcome data should be combined when setting breakpoints to minimise the emergence and spread of antimicrobial resistance.I. Comas was supported by PID2019-104477RB-I00 from the Spanish Science Ministry and by ERC (CoG 101001038)Peer reviewe
    • …
    corecore